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Abstract 

 

Understanding the magnetic interaction force between permanent magnets is important for the 

design and optimization of the system where they are implemented. However, the methods that 

are utilized in the literature to compute this force are either time-consuming or approximated 

with a low degree of generalization. This article presents a surrogate model developed based 

on a data-driven approach using a deep learning method which addresses this problem. Firstly, 

a charge model is applied to derive a semi-analytical model (SAM) of the interaction forces 

between permanent magnets. Using this SAM, the features of the deep learning model (DLM) 

have been selected, and the training, validation and test datasets that are used to train the DLM 

have been generated. The DLM training process took 2 hours and 30 minutes to complete. The 

difference between the SAM and deep learning model is less than 4.2 %, and there are 99.2 % 

and 96.05 % of the cases over 885 random tested samples where the errors are less than 2 % 

and 1 %, respectively; this indicates that the selected deep learning model is feasible and can 

provide accurate results compared to the original SAM. Moreover, the permutation feature 

importance (PFI) analysis shows that the most predictive feature is the separation distance 

between the magnets, and the heights of the magnets have less predictive power than their radii; 

the generality of the deep learning model is also demonstrated based on the PFI criteria. 

Furthermore, compared with Finite Element Analysis (FEA) and the SAM, the surrogate model 

yields a high accuracy of prediction (the minimum, average and maximum differences between 

the surrogate and FEA models are 0.06 %, 0.42 % and 1.74 %, respectively) while it required 

a computational time less than 10-4 s, which is multiple orders of magnitude lower than its FEA 

and SAM counterparts. The developed data-driven surrogate model can facilitate the design, 

optimization processes of permanent magnet systems and online computation of the magnetic 

force through a dynamic study. In addition, using the superposition principle, the magnetic 

forces between cross-shaped permanent magnets can be computed using the surrogate model.  

The authors have further designed a user-friendly software interface to compute the magnetic 

force using the recently developed surrogate model; the software is publicly available under 

the CC BY 4.0 license, and can be found at: https://github.com/vantainguyen/Force-between-

magnets-machine-learning.  

Keywords: Data-driven modelling; Interaction force; Magnetic force; Permanent magnets. 

mailto:vantai.nguyen@uq.edu.au
mailto:88.vantai.nguyen@gmail.com


2 
 

I. Introduction 

 

Computation of the interaction force between permanent magnets is essential for the design, 

optimization, and the dynamic study of magnetic devices [1, 2] such as magnetic springs [3], 

energy-harvesting applications [4, 5], permanent magnet motors, couplings and gears [1], 

medical robots [6] and soft-robots [7]. For example, in the work of Abdullah et al. [4], three 

permanent magnets are arranged coaxially in a novel energy harvester; in order to perform the 

dynamic analysis and characterization of this harvester, the interaction force between these 

permanent magnets is computed. In a soft robotic application studied by Kwok et al. [7], 

Neodymium-iron-boron (NdFeB) ring magnets are embedded in silicone elastomers and 

acrylonitrile-butadiene-styrene (ABS) to make and maintain the connections between these 

components; the magnetic force between these magnets as a function of distance of separation 

is calculated and analysed to assist the robot design process. In general, however, the magnetic 

force computation task is challenging and time-consuming due to the nature of 

Electromagnetism [8]. Even though this force can be computed using traditional Finite Element 

Analysis (FEA), this conventional method has a high computational cost and requires large 

computer memory resources [6, 9] which is not convenient for the purpose of optimization and 

real-time dynamic computational studies. In order to deal with this issue, the interaction force 

between permanent magnets is normally approximated with polynomial expressions that are 

applied to study the dynamic behaviour of the system [4]. Nonetheless, these approximations 

can be performed when the exact material and geometrical parameters of the magnets are 

known; in other words, the polynomial models need to be redetermined if a change in the 

parameters of the permanent magnets is required which is inconvenient and time-consuming 

for a parametric optimization study.  Other semi-analytical expressions [6, 10] have been 

derived to compute the magnetic force between permanent magnets with more generalized 

geometrical shapes. However, they involve complicated terms [11], and the solutions involve 

numerical integration of multiple-integral expressions which again can be time-consuming [2, 

12] for optimization and real-time computational purposes.  

Currently, machine learning has evolved as a powerful tool which can help solve complex 

problems ranging from physics to industrial manufacturing [9, 13, 14]. Roy and Wodo [9] 

implemented neural networks to model the thermal history in additive manufacturing; as a 

result, the surrogate model that was developed can compute the thermal history much faster 

(1000 times) than traditional Finite Element Analysis which is beneficial for real-time 

prediction of the thermal history. Khan et al. [13] utilized the deep learning technique to 

formulate a model to predict the magnetic field distribution of electric motors with a wide range 

of the components’ dimensions at low computational cost. Moreover, a Poison’s equation has 

been solved using the deep learning technique with low computational time by Shan et al. [14]. 

The machine leaning method has therefore been shown to be useful in many applications, and 

it can potentially be applied to formulate a fast-computed model to calculate the magnetic 

interaction force between permanent magnets. Therefore, this study focuses on a rapidly 

executable and data-driven based model of the magnetic interaction force between permanent 

magnets using the deep learning technique. More details of the theory of deep learning can be 

found in the work of Goodfellow et al. [15]. 

 

The fast-computed model can facilitate the design and optimization processes of permanent 

magnet systems such as parametric design and optimization of magnetic springs, magnetic 

levitation systems and soft robots with embedded permanent magnets etc. In this study, the 

levitation force between two coaxial permanent magnets with a cylindrical shape is the focus; 
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however, this research can also provide a general guide to develop the magnetic force 

interaction between permanent magnets of any shape with an arbitrary orientation using the 

machine learning method. In the development of a machine learning model, feature selection 

is one of the important factors as it can affect the dataset volume required for the training and 

validation process. It is noted that the optimal machine learning model should have the 

minimum required input features which can save training time and memory resources of the 

computer used for the training process. One of the advantages of the data-driven approach 

presented in this article is that it optimizes the required input features of the machine learning 

model.  

The data-driven approach includes the following steps. Firstly, a simplified semi-analytical 

model (SAM) to compute the magnetic force is derived based on the charge model [1]. Using 

this SAM, the architecture of the SM is constructed. Furthermore, the optimized features of the 

deep learning model are selected, and the datasets implemented for the training process have 

been generated using the SAM. The results and efficiency of the SM is verified with those of 

the FEA and the SAM. The permutation feature importance of the magnets’ geometrical 

parameters and a test on the generality of the deep learning model w.r.t these parameters are 

carried out. Finally, a user-friendly software designed to compute the magnetic force based on 

the surrogate model is described. 

The authors hope that the presented frameworks and results in this article can be an avenue to 

inspire further research in the application of machine learning method to solve other complex 

physics-based problems such as dipole interactions for micromagnetic analyses [16 - 19], and 

particularly the magnetic forces interaction between magnets of complex shapes different from 

those presented in this paper. 

The remainder of this article is organized in the following sections. Section II explains in detail 

the underlying physics behind the interaction force between permanent magnets, and a semi-

analytical model for the magnetic force calculation is developed. Section III formulates the 

surrogate model based on the deep learning method. Section IV describes the data generation 

and parameter selection for the deep learning model. Section V presents the training and 

verification results of the developed model. Feature importance analysis and a test on the 

generality of deep learning model is described in section VI. Section VII discusses the use of 

the superposition principle for permanent magnet addition and subtraction. A user-friendly 

software interface is presented in section VIII. Finally, the conclusions are provided in Section 

IX. 

   

 

II. Underlying physics and the semi-analytical model for magnetic force calculations 

In order to facilitate the development of the novel surrogate model based on the deep learning 

methods to compute the magnetic interaction force between two permanent magnets, a semi-

analytical model of this force has been formulated based on the charge model [1]. Figure 1 

depicts the schematic of two cylindrical permanent magnets with a co-axial arrangement in the 

Cartesian coordinate system OXYZ. The lower magnet has the radius of R (m) and thickness 

of h (m) with the axial magnetization vector J⃗ ; in addition, the upper magnet has the radius of 

R1 (m) and thickness of h1 (m) with the axial magnetization vector J1
⃗⃗⃗ ⃗ in an opposite direction 

to J⃗; the separation distance between these magnets is ξ (m). It is noted that the unit of magnetic 
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remanences J and J1 (the magnitudes of the magnetization vectors J⃗ and J1
⃗⃗⃗ ⃗, respectively) used 

in this study is Tesla (1 T = 1 H∙A/m2). 

 

 

 

Fig. 1 – Schematic of two co-axial permanent magnets. 

Due to the charge model [1], the magnetic force between these two permanent magnets can be 

calculated using Eq. (1). The surface integral in Eq. (1) reveals the contribution of the upper 

magnet’s surface charge density σs(O1, R1, h1) to the force F⃗⃗ (N); which is analogous, to the volume 

integral in Eq. (1) that represents the contribution of the upper magnet’s volume charge density 

σv(O1, R1, h1) to the force F⃗⃗ (N). In addition, B⃗⃗⃗(O,R,h) (T) is the magnetic field generated by the 

lower magnet. 

F⃗⃗  = ∬ B⃗⃗⃗(O,R,h)σs(O1, R1, h1)ds
s

+ ∭ B⃗⃗⃗(O,R,h)σv(O1, R1, h1)dv
v

,   (1) 

The surface charge density σs(O1, R1, h1) (A/m) can be determined as follows Eq. (2):  

 

σs(O1, R1, h1) = n⃗⃗. J1
⃗⃗⃗ ⃗/μ0 = {

  J1/μ0 for the lower surface

  0 for the cylindrical surface 
−J1/μ0 for the upper surface

,    (2) 

where μ0 = 4π × 10-7 (H/m) is the permeability of free space, and n⃗⃗ is the unit vector normal to 

the corresponding surface.  
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The volume charge density is σv(O1, R1, h1) = −∇⃗⃗⃗ ∙ J1
⃗⃗⃗ ⃗/μ0 = 0 (A/m2), (3) as the magnetization is 

uniformly axially oriented.  

Therefore, only the component with the surface charge density contributes to the interaction 

force between the given magnets Eq. (4). 

F⃗⃗  = ∬ B⃗⃗⃗(O,R,h)σs(O1, R1, h1)ds,

s

     (4) 

Due to the geometrical symmetry of the magnets and the current arrangement, only the axial 

component of the magnetic field B⃗⃗⃗(O,R,h) contributes to the interaction force (calculated using 

Eq. (4)) between these permanent magnets.    

In the author’s previous article [2], a semi-analytical model using fast computation time was 

derived in order to calculate the magnetic field generated by an elliptical cylinder with axial 

magnetization. These expressions can be applied to compute the magnetic field distribution of 

a circular cylinder provided the semi-major and semi-minor axes are equal. Including this 

condition, the axial component of the magnetic field BZ(r, α, z) generated by the lower 

permanent magnet at point Q(r, α, z) (Fig. 1) in the air space can be expressed as Eq. (5) (It is 

worth noting that the expression is derived using the Cylindrical coordinate system 

(r (m), α (rad), z (m)) whose origin is the same as the one of the Cartesian coordinate system 

O and the azimuth starts from the OX axis (Fig. 1)): 

 BZ(r, α, z) =  BZ
+(r, α, z)+ BZ

- (r, α, z),    (5)  

 

where BZ
+(r, α, z) (T) and BZ

- (r, α, z) (T) are the magnetic field components from the upper and 

lower surfaces of the lower magnet (O, R, h), respectively; these values can be calculated using 

Eqs. (6) and (7). 

 

BZ
+(r, α, z)=

J

4π
∫ (

2(𝛿R −  2𝜉+) 

(4𝜉+ − 𝛿2)√R(R − 𝛿) + 𝜉+

+  
 4√𝜉+ 

4𝜉+ − 𝛿2
) (z −  h)dθ,

θ = π

θ = - π

       (6) 

 

where 𝛿 = 2r cos(α – θ) and 𝜉+ = r2  + (z − h)2.  

 

BZ
- (r, α, z)=

−J

4π
∫ (

2(𝛿R −  2𝜉−) 

(4𝜉− − 𝛿2)√R(R − 𝛿) + 𝜉−

+ 
 4√𝜉− 

4𝜉− − 𝛿2
) (z)dθ,

θ = π

θ = - π

       (7) 

 

where, 𝜉− =  r2  + z2.  

 

Inserting the geometrical parameters of the magnets into Eq. (4) and including Eqs. (2), (5), 

allows the semi-analytical model to be derived to compute the magnetic force F (N) as 

presented in Eq. (8). 

F =
J

4π

J1

μ0
∫ ∫ (B∗+ − B∗−)r

𝑅1

0

𝜋

−𝜋

dαdr,     (8) 
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where 
J

4π
B∗+ (T) and 

J

4π
B∗− (T) are the magnetic field at those points located on the lower and 

upper surfaces of the upper magnet (O1, R1, h1), respectively.  

 

 

III. Surrogate model formulation based on deep learning 

Solving Eq. (8) to obtain the magnetic force involves a triple numerical integration which is 

time-consuming and difficult to optimise within a reasonable computational time. As 

mentioned earlier, the goal of this study is to develop a substitute model which can provide an 

accurate prediction of the magnetic force while requiring a low computational cost. A substitute 

model which can replace the original model to accomplish the goal is called a surrogate model 

[9, 20]. Mathematically speaking, if the original physics-based function is represented by Eq. 

(9), the surrogate model can be expressed as Eq. (10). 

Y = F(X),           (9) 

where X and Y are the input and output of the function F, respectively. 

Ŷ = F̂(X̂),         (10) 

where X̂ ∈ X, and Ŷ are the input and output of the surrogate model F̂. 

From Eq. (8), it is noted that the interaction force F can be reformulated as a simple 

multiplication operation between two remanences J and J1 representing the material properties 

of the magnets and the normalized magnetic force Fn (Eq. (11)). Due to this simple 

multiplication operation, J and J1 are not chosen as the input features of the deep learning 

model; this reduces the volume of data required to train the model efficiently as well as 

avoiding the errors caused by these parameters, in other words, faster learning and more 

accurate predictions are the result of this feature reduction. 

F = JJ1Fn,    (11) 

where the normalized magnetic force Fn is computed as follows Eq. (12) (please refer to Eq. 

(8) for more information on the parameters utilized in this equation): 

Fn  =
1

4π

1

μ0
∫ ∫ (B∗+ − B∗−)r

𝑅1

0

𝜋

−𝜋

dαdr,     (12) 

It is clear from Eqs. (6), (7) and (12) that Fn is the function of geometrical parameters including 

radii and thicknesses of the lower magnet (O, R, h) and upper magnet (O1, R1, h1) and the 

separation distance ξ. Therefore, these parameters can be implemented as the inputs of the deep 

learning model which seeks to replace Eq. (12) in order to compute the normalized magnetic 

force at a lower computational cost.  

With a deep learning method, a surrogate model of the magnetic force F can be expressed 

mathematically as follows: 

For the geometrical parameters  Ξ ∈ 

RL x 1 (L is the number of the input features; it is noted that L = 5 in this study) and the  
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function f: R(L + 2) x 1 → R, the magnetic force can be formulated as Eq. (13). 

F = f(J, J1, Ξ) = JJ1(Wn+bn)σ(Wn-1σ(…Wkσ(….σ(W2σ(W1Ξ+ b1)+b2))+bk)+bn-1),     (13) 

where  Wi = 1…n ∈ Rdi+1 x di-1, bi = 1…n ∈ Rdi+1 x 1 are the matrices of the weights and biases (n = 

m+1; m - the number of the hidden layers of the deep learning model; di+1 and di-1 are the 

number of the neurons in the i+1 and i – 1 layers, respectively); σ denotes an applied activation 

function. 

The computational graph of the surrogate magnetic force model is depicted in Fig. 2. The initial 

geometrical parameters of the two magnets (R, h, R1, h1 and ξ) are passed onto the five input 

neurons of the deep leaning model which include several hidden layers (the exact number of 

the hidden layers and their neurons are discussed in detail in Section IV) and one neuron of the 

output layer outputting the normalized magnetic force Fn. The remanences of the magnets (J 

and J1) are passed onto two multiplication operators M1 and M2. The final output is the required 

magnetic force F as a result of the normalized force Fn multiplied by J and J1. 

 

 

Fig. 2 – Architecture of the surrogate magnetic force model. 

IV. Data generation and parameters of deep learning model 

A dataset of 116 361 non-repeated random samples has been generated by solving Eq. (12) 

with the numerical integration of the triple integrals. The samples have been converted into 

float32 number types to reduce the required memory volume for the training process. The 

geometrical parameters of the simulated samples distributed within the range (Min, Max) as 

listed in Table I. This dataset is then divided into three subsets of training, validation and test 

data on the ratio of 92/4/4. In the other words, there are 107 052 samples of the training dataset, 

4655 samples of the validation and 4654 samples of the test.   
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Before fitting the datasets into the developed machine learning model, they are normalized 

following the Min - Max normalization (Eq. (14)) approach. This normalization has some 

advantages such as improving the numerical stability of the model and speeding up the training 

process [21]. 

x̂i = 
xi - min(X)

max(X) - min(X)
,         (14)   

where xi ∈ X is the ith component of the dataset X; max(X) and min(X) are the maximum and 

minimum values of X, respectively; x̂i is the normalized value of xi.  

Table I – Geometrical range of simulated samples  

Parameters Min 

(mm) 

Max 

(mm) 

R 3 30 

h 5 50 

R1 3 30 

h1 5 50 

ξ 2 50 

 

The selection of the parameters used in the deep learning model is important in order to 

decrease the training time while increasing the prediction accuracy. Small numbers of neurons 

and hidden layers can result in low accuracy and high training time; on the other hand, 

excessive numbers of neurons and hidden layers can lead to overfitting and high computational 

complexity [22] such as memory resources. Unfortunately, there are no ideal methods to 

determine the hyperparameters since this depends on numerous reasons including the volume 

of used datasets etc. However, the trial and error method can be implemented to select these 

parameters. After training the deep learning model with different numbers of neurons and 

hidden layers (the number of hidden layer was randomly selected between 1 and 5 layers, and 

similarly, the number of neurons was randomly selected between 20 and 500 neurons for each 

layer), four hidden layers with 300 neurons for each layer were chosen as they provided a 

minimal training loss within a reasonably affordable training time (2 hours and 30 mins). 

Moreover, no overfitting was observed when using these hyperparameters. Therefore, the deep 

learning model with this configuration has been applied in this study. Adam algorithm 

(Appendix A) which combines the advantages of the well-known methods AdaGrad and 

RMSProp [23] was selected as the optimizer in this experiment.  

The purpose of training the deep learning model is to determine the optimal parameters (the 

weights (W) and biases (b) ) of this model to minimize the distances between the ground-truth 

(F) and predicted (F̂) magnetic force values. The problem of finding these parameters can be 

represented using Eq. (15). 

min
𝑊,   𝑏

𝑑𝑖𝑠𝑡(𝐹, f(J, J1,X))  ≝  min
𝑊,   𝑏

ℒ(F, F̂),     (15)  

where ℒ(F, F̂) is a loss function (typically a convex function) of the two forces. 

For a regression problem, root mean squared error (RMSE) (Eq. (16)) is widely chosen as the 

loss function to evaluate the prediction results. Thus, this function is implemented in this study. 
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ℒ(F, F̂) = RMSE
F
 =√

1

K
∑(Fi - F̂i)

2

K

i=1

 ,             (16)       

where Fi and F̂i are the ground-truth and predicted magnetic force of ith sample, respectively; 

K is the number of magnetic force samples. 

In order to solve the optimization problem Eq. (15), the backpropagation algorithm [15] is 

utilized in the training process. 

Another important parameter of the deep learning model is the activation function. Rectified 

linear unit (ReLU) has proved to be an effective function in many studies [15, 24, 25]. Thus, 

ReLU has also been chosen as the activation function in this study. 

y
i
(xi) = {

0,  & xi < 0
xi,  & xi ≥ 0

,              (17)       

This function yields an output yi equal to the input xi if this input is greater or equal to zero; on 

the other hand, the output of this function is zero if its input is less than zero (Eq. (17)) (Fig. 3 

visually describes the ReLU activation function).  

 

 

 

Fig. 3 – Rectified linear unit (ReLU) activation function: xi and yi are the input and output of 

the activation function y(x). 

When the training dataset is large, minibatch could be implemented to speed up the 

convergence of the training process [15, 26]. In this study, a minibatch of 1024 samples was 

selected. 

V. Training the deep learning model and Finite Element Analysis validation 

The training process was carried out on a personal computer with the Intel® Core™ i7-9700 

CPU @ 3.00GHz 3.00 GHz and 16.0 GB RAM processor. The code of the machine learning 

model was written based on the TensorFlow developed by Google Brain using the Python 

language (version 3.7.4). It was observed that the losses of the validation and test follow the 

trend of the training process, in the other words, there is no overfitting found during the 
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training. Therefore, the criterion to stop the training process is that the RMSE of the training 

process is less than 0.065. This criterion was accomplished after 2 hours and 30 minutes of 

training. It is worth noting that the purpose of the training process is to update the weights and 

biases of the deep learning model to reach the expected accuracy (RMSE = 0.065). After 

training, the model with the updated weights and biases is ready to use without spending time 

on retraining.  

 

Fig. 4 – Losses of the training, validation and test processes. 

To develop more insight into the accuracy of the trained deep learning model, 885 non-repeated 

random samples were applied to compare the results of this model and those of the semi-

analytical model. The excellent agreement between the computed results can be visually 

demonstrated (colour -based) using Fig. 5 which represents their heatmap plots. It is worth 

noting that the correlation factor between the predicted and semi-analytical results is Rcorr = 

99.999%. 

 

Fig. 5 – Heatmap plots of the predicted and semi-analytical results: (a) the predicted results of 

the surrogate model; (b) the results of the semi-analytical model.  
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Moreover, Fig. 6 shows the distribution of the error between the two models. The difference 

between the two models is less than 4.2 %, and there are 99.2 % and 96.05 % of the cases 

where the errors are less than 2 % and 1 %, respectively. This means that results from the deep 

learning model are in excellent agreement with the original semi-analytical model.  

 

 

Fig. 6 – Distribution of the errors between the deep learning and semi-analytical models. 

 

In order to validate the accuracy of the surrogate model and its efficiency in terms of the 

computational time, the magnetic force results computed using this model were compared with 

those calculated using the developed semi-analytical model and Finite Element Analysis 

(FEA). The FEA was performed using the Electromagnetic Simulation Software®(EMS) 

(EMWORKS, Inc, Quebec, Canada) [27, 28, 29] integrated in SolidWorks® (Dassault 

Systèmes SE, Vélizy-Villacoublay, France). Two subsets of data were selected for comparison. 

Subset 1 consists of samples of two permanent magnets with random material and geometrical 

parameters (J (T), R (mm), h (mm), J1 (T), R1 (mm), h1 (mm), ξ (mm)) (Fig. 1). Subset 2 

includes two permanent magnets with different separation distances. The setting magnetic 

materials’ parameters [1, 8, 28] in this FEA demonstration are listed in Table II which includes 

the remanence and its corresponding coercivity; the relative permeability (μr) is set to 1.05 for 

all the cases (it is worth noting that the FEA results are invariant to the relative permeability as 

the remanence and coercivity are used in this study [7]). There are two air regions in cylindrical 

shapes are applied in the simulation. The two permanent magnets lie inside the smaller one; 

this smaller air region lie inside the bigger one. Finer mesh is assigned to the magnets and the 

small air region; coarser mesh is assigned to the remained air region. The sizes of the smaller 

and bigger air regions as well as the mesh sizes are tuned until the convergence of the magnetic 

forces achieved. The virtual work [29] is used as the computation method in this study. The 

details of the sample points and the results of the magnetic forces computed using the semi-

analytical, surrogate and FEA models are listed in Table III.   

Table II – Material properties using in setting up the FEA [1, 8, 28] 

Remanence (J or 

J1) (T) 

Coercivity (Hc) 

(A/m) 

Relative 

permeability 

Computation 

method 
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0.5 393000 

1.05 Virtual work 

0.7 538000 

0.8 637000 

0.9 710000 

1 790000 

1.1 871000 

1.2 925000 

 

Table III – Comparison between the results of the semi-analytical, surrogate and FEA models 

Material and Geometrical 

parameters 

(J (T), R (mm), h (mm), J1 (T), R1 

(mm), h1 (mm), ξ (mm))  

Semi-

analytical 

results 

(N) 

Surrogate 

model 

results 

(N) 

FEA results 

(N) 

Subset 1 – With Random 

parameters 

 

(0.5, 20, 15, 0.5, 16, 18, 20) 7.0217 7.0289 7.0229 

(0.9,17,11, 0.8,10, 8, 14) 7.5095 7.4741 7.5006 

(1, 12, 12, 1, 24, 17, 37) 5.5064 5.5225 5.5309 

(0.7, 24, 19, 1, 6, 36, 10) 10.4319 10.4672 10.4590 

(1, 14, 42, 1.2, 23, 5, 15) 26.6690 26.6741 26.6530 

(1.1, 11, 11, 1, 24, 36, 2) 59.7973 59.7948 59.8500 

 

Subset 2 – With different separation 

distances 

 

(1, 8, 9, 1, 12, 19, 2) 36.3253 36.3335 36.4390 

(1, 8, 9, 1, 12, 19, 4) 27.6379 27.8493 27.6200 

(--------------------,6) 20.8733 20.8972 20.8680 

(--------------------,8) 15.8355 15.7654 15.8850 

(--------------------,12) 9.3697 9.3828 9.3773 

(--------------------,16) 5.7812 5.7943 5.7753 

(--------------------,20) 3.7149 3.7128 3.7046 

(--------------------,24) 2.4769 2.4402 2.4674 

(--------------------,28) 1.7065 1.6709 1.7005 

 

From Table III and Fig. 7, it can be noted that the computed results of the three models are in 

excellent agreement with each other. Moreover, the minimum, average and maximum 

differences between the semi-analytical and FEA models are 0.017 %, 0.19 % and 0.44 %, 

respectively. Furthermore, the minimum, average and maximum differences between the 

surrogate and FEA models are 0.06 %, 0.42 % and 1.74 %, respectively. However, it took an 

average of 11.0 s to execute a single sample (1000 random samples were selected for this 

demonstration) using the semi-analytical model, and less than 10-4 s using the surrogate model 

which is suitable for the real-time computation and is best for the optimization process. On the 

other hand, the FEA model took an average of more than 10 minutes to complete (Table IV). 

It is worth noting that for this time comparison purpose, all three models were executed on a 

personal computer with Intel® Core™ i5-8250U CPU @1.60GHz with 8.0 GB RAM. This 
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means that the surrogate model is multiple orders of magnitude faster than its semi-analytical 

and FEA counterparts.  

 

Table IV – Execution time comparison  

Models Semi-analytical 

(seconds) 

Surrogate 

(seconds) 

FEA 

(seconds) 

Execution 

time 

11.0 < 0.0001 >600 

 

 

Fig. 7 – Comparison between the semi-analytical, surrogate and FEA models (It is noted that 

on this graph, the markers denoting the semi-analytical and surrogate models lie behind the 

green marker of the FEA model, that indicates the excellent agreement between these models). 

 

VI. Feature importance analysis and a test on the generality of deep learning model 

 

As described in section III, our deep learning model requires an input vector of five features 

which are the geometrical parameters of two magnets including the radius and height of the 

lower magnet R, h, respectively; the radius and height of the upper magnet R1, h1, respectively 

and the separation distance between these magnets ξ. However, the predictive power, or in the 

other words the importance of each feature may not be the same. This means that the variation 

of one feature may decrease or increase the predictive force more than the variation of the 

others. To quantitatively measure the predictive power of the input features, the so-called 

permutation feature importance [30, 31, 32] is implemented in this study. The algorithm steps 

of this method are as follows. 

 

Inputs: The inputs for this algorithm includes the trained deep learning model, the validation 

dataset of 885 non-repeated samples including the input features (five geometrical parameters) 

and labels (associated magnetic forces) and metric functions 𝛭(F, F̂) (F is the ground truth of 

the magnetic force and F̂ is the predictive one using the machine learning model). In this 
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investigation, the so-called R-squared (R2) score function (the coefficient of determination) is 

utilized as the metric function. The R2 function is determined as Eq. (18).  

 

𝑅2(F, F̂) = 1 − 
𝑆𝑆𝑟

𝑆𝑆𝑡
,           (18) 

  

where 𝑆𝑆𝑟 =  ∑ (𝐹𝑖 −  𝐹𝑖̂)
𝑖=𝑁
𝑖=1  – the residual sum of squares due to error; 𝑆𝑆𝑡 =  ∑ (𝐹𝑖 − 𝐹𝑖̅)

𝑖=𝑁
𝑖=1  

– the total sum of squares due to error; F, F̂ and F̅ denote the ground truth, predicted value and 

mean of the ground truth of the magnetic force, respectively; i denotes the computed ith sample 

of the total N samples (N = 885).  

 

Step 1. Compute the baseline R2 (ebr):  ebr = 𝑅2(F, F̂). 

Step 2. For each feature q = 1…5, performing following three operations: 

➢ Generate new dataset by permuting the feature q in the original dataset (the rest of 

the features remains unchanged); 

➢ Estimate the new R2 (eqr) based on the new permuted dataset:  eqr = 𝑅2(F, F̂𝑞); 

where F̂𝑞 – the predicted magnetic force as a result of the permutation of feature q; 

➢ Compute the permutation feature importance (PFI): PFIR = ebr - eqr for the R2. It is 

worth mentioning that the PFI can also be evaluated using the ratios: PFIR = eqr/ebr. 

In this study, the first computation technique is utilized.  

Step 3. Repeat Step 2 until a stop condition is met such as the convergence of the mean PFI or 

the number of iterations reached. 

Step 4. Compute the mean and standard deviation values of PFIs. 

Step 5. Sort the achieved mean PFIs by descending. The greater mean PFI of a feature means 

the more important it is. 

The above-described algorithm can be implemented with the help of the open access machine 

learning Scikit-learn [33].  

 

Fig. 8 – Feature importance per R2 
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Figure 8 and Table V shows that the most predictive feature is the separation distance (ξ) (mean 

R2 = 1.47), and the least ones are the heights of the permanent magnets (mean R2 = 0.25 and 

0.19) (it is noted that Error! Reference source not found. (a) presents the boxplot of the feature 

importance and Error! Reference source not found. (b) describes its heatmap; the number of iterations 

is 200 indexing with zero start). Moreover, all the features are non-trivial to the deep learning 

model as their feature importance is greater than zero. From Table V, the summation of the 

feature importance for the radius and height of the lower magnet is PFIL = 1.28, and this 

summation for the radius and height of the upper magnet is PFIU = 1.12 which is slightly 

smaller than PFIL. This means that the order of the input features of these parameters can have 

some influence on the predictive results. However, in real-world, there should not be different 

results when the input order of these features between the lower and upper magnets is 

exchanged. It is worth mentioning that the permutation feature importance is also computed 

using the root mean squared error (Eq. 16) as a metric function, and similar results (the most 

and least predictive features and the differences between the summation of the importance of 

the radius and height of two magnets) to the R2  criterion are observed; this demonstrates the 

adequacy of using one of the two metric functions in analysing the PFI. To verify the 

effectiveness of the trained deep learning model towards its generality, in the dataset of the 

non-repeated 885 samples with the input features’ order of (R1, h1, R, h, ξ) for the deep learning 

model, the positions of the upper magnet’s radius and height are swapped with those of the 

lower magnet to form a new dataset with the input features’ order of (R, h, R1, h1, ξ). This 

dataset is then fitted to the deep learning model to predict the results, which are compared with 

the ground truth using the R-squared (R2) criterion. As a result, the achieved R2 is 0.99999523 

which is very close to 1. This demonstrates that the trained model is accurate to predict the 

magnetic force regardless of the input order of the lower and upper magnets’ geometrical 

parameters; in the other words, the deep learning model has good generality.  

Table V – Permutation feature importance  

Geometrical features (by 

descending order of importance) 
Mean ± standard deviation 

Separation distance (ξ) 1.47 ± 0.10 

Radius of the upper magnet (R1) 1.09 ± 0.11 

Radius of the lower magnet (R) 0.87 ± 0.08 

Height of the lower magnet (h) 0.25 ± 0.03 

Height of the upper magnet (h1) 0.19 ± 0.02 

 

VII. Discussion on using the superposition principle for permanent magnet addition 

and subtraction    

The fast-computed surrogate model recently derived for the computation of the magnetic forces 

between two solid cylinders can be applied to calculate the magnetic forces between cross-

shaped (solid, annular) cylinders and between multiple cylinders using the superposition 

principle [1, 28]. The rule of thumb (subtraction rule) to construct an annular permanent magnet 

(upper magnet in Fig. a) with an outer radius R1, inner radius R2, a height h1 and a 

magnetization J1
⃗⃗⃗ ⃗ is that it is composed of two solid magnets; the first magnet has radius R1, 

height h1 and a magnetization J1
⃗⃗⃗ ⃗, on the other hand, the second magnet (shaded part with yellow 

in Fig. 9) has radius R2, height h1 and a magnetization J2
⃗⃗⃗ ⃗ which has the same magnitude as of 
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J1
⃗⃗⃗ ⃗, but in opposite direction. In this case, the magnetic force between two magnets 

F⃗⃗[(𝑂, 𝑅), (𝑂1, 𝑅1, 𝑅2)] can be calculated using the surrogate model (Eq. 13) as a summation of 

the magnetic forces between three cylinders (𝑂, 𝑅), (𝑂1, 𝑅1) and (𝑂2, 𝑅2) as shown in Eq. (19). 

In the case of more than two magnets (for example, there are three magnets as depicted in Fig. 

10) the resultant magnetic force is the summation of the magnetic forces between a base magnet 

(e.g. the lower magnet in Fig. 10) and the rest magnets (e.g. the two upper magnets in Fig. (10); 

in the case of three magnets, this summation can be represented as shown in Eq. (19)).   

F⃗⃗[(𝑂, 𝑅), (𝑂1, 𝑅1, 𝑅2)] =  F⃗⃗[(𝑂, 𝑅), (𝑂1, 𝑅1)] +  F⃗⃗[(𝑂, 𝑅), (𝑂2, 𝑅2)],    (19) 

   

Fig. 9 - Computation of magnetic force between solid and annular cylinders 
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Fig. 10 – Computation of magnetic forces between multiple magnets  

The surrogate model can be applied to calculate the magnetic forces between magnets of cross-

shaped revolution (such as cylinders, cones, spheres etc.) using the segmentation and 

superposition principles. Firstly, a non-cylinder magnet is divided into N sections (here N is a 

hyperparameter which needs to be tuned until convergence reached) along the axis of 

revolution (e.g. a cone in Fig. 11); each section has the same height and magnetization. 

Assuming that each section has a cylindrical shape, the resultant magnetic forces between the 

cross-shaped magnets are the summation of the magnetic forces between their segmented 

sections based on the superposition principle. For instance, Fig. 11 depicts schematic of a 

magnetized cylinder (with radius R, height h and magnetization J) and a magnetized right 

circular cone with a circular cross-sectional area (with radii R1, Rn, height h’ and magnetization 

J1). Dividing the cone into N sections S1, S2 … SN; assuming that each section is a cylinder 

with radius Ri (i = 1…N), height h’’, magnetization J1 and separation distance ξi to the lower 

cylinder (Fig. 11); these geometrical parameters can be derived as follows (Eqs. (20, 21 and 

22)).  

h’’ = h’/N,    (20); ξi = ξ1 + (i – 1)h’/N,    (21); Ri = (i – 1)(Rn – R1)/N + R1,     (22) 

The resultant force between the cylinder and cone is represented in Eq. (23). 

F⃗⃗[(𝑂, 𝑅), (𝑂1, 𝑅1, 𝑂𝑛, 𝑅𝑛)] =  ∑ F⃗⃗[(𝑂, 𝑅), 𝑆𝑖( 𝑅𝑖 , ℎ′′, 𝜉𝑖)]

𝑁

𝑖=1

,       (23) 

where N is a hyperparameter (the number of divided sections) which needs to be tuned until 

convergence reached. 
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Fig. 11 – Computation of magnetic forces between cross-shaped magnets 

 

 

VIII. A user-friendly software interface 

 

The developed surrogate model with the deep learning model has been demonstrated to be 

efficient to compute the magnetic force between two permanent magnets. However, the 

application of this ready-to-use model can be challenging for readers who have limited access 

or knowledge on Python and its computation and machine learning libraries such as Numpy, 

Scikit-learn, TensorFlow and Keras. Therefore, the authors have developed a user-friendly 

software interface (USI). The architecture of this USI includes the user input interface, a server 

to process computation and the output result interface (Fig. 12). 

 

 

 

Fig. 12 – Information flow of the USI 
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The input and output interfaces (Figs. 13, 14) are built as HTML based web browsers 

(cascading style sheets or CSS is used to improve presentation style) where one can input the 

material and geometrical parameters of the permanent magnets, and get the results (magnetic 

force) back. They include a header, parameter input fields, a button to submit the inputs, a 

figure field, a predicted result field and the license declaration. It is noted that this is an open-

source software under the CC BY 4.0 license, so anyone can adapt, share for non-commercial 

purposes.  

After submitting the inputs (from the input interface), these parameters will go to the server 

written in Python, Numpy, Tensorflow + Keras, Scikit-learn and Flask [34] languages. This 

server will use the input parameters to fit into the surrogate model and return the predicted 

magnetic force which will appear in the predicted result field on the output interface. The output 

figure will depict the vectors showing the orientations of the remanences and magnetic force 

(Fig. 14) 

 

Fig. 13 – Input interface 
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Fig. 14 – Output interface 

 

 

IX. Conclusion 

 

In this study, a data-driven based model of the magnetic interaction force between permanent 

magnets which can be rapidly computed is presented. Firstly, the charge model has been 

applied to develop the semi-analytical model (SAM) to calculate the magnetic force. Using this 

SAM, the optimized input features of a deep learning model (DLM) have been selected. 

Furthermore, the training, validation and test datasets are generated based on this SAM. These 

datasets have been used to train the DLM which is a key element of the data-driven surrogate 

model (DDSM). As demonstrated in this article, the results of the DDSM are in excellent 

agreement with those of the semi-analytical and Finite Element Analysis counterparts. 

However, the computational cost of the DDSM is multiple orders of magnitude lower than the 

others. This demonstrates the feasibility and effectiveness of applying the deep learning method 

to describe the magnetic force interaction between permanent magnets, as an alternative 

method which can potentially replace the existing conventional Finite Element Method and 

SAM. The permutation feature importance analysis shows that the highest influential feature 

on the machine learning model is the separation distance between the magnets, and the least 

are their heights. The deep learning model is generalized regardless of the order of the magnets’ 

geometrical features input ((R1, h1, R, h, ξ) or (R, h, R1, h1, ξ)). The fast-computed model 

presented in this article can facilitate the design and optimization processes of permanent 

magnet systems such as parametric design and optimization of magnetic springs, magnetic 

levitation systems and soft robots with embedded permanent magnets. In this research, the 

interaction force between two cylindrical permanent magnets with coaxial orientation has been 

the focus; nevertheless, the described data-driven approach can be a general guide to develop 

the magnetic force interaction between permanent magnets of any shape with arbitrary 

orientation. Using the surrogate model, the magnetic forces between cross-shaped permanent 

magnets can be computed due to the superposition principle. It is noted that a user-friendly 

HTML-based software has been developed to compute the magnetic force based on the 
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surrogate model and publicly available for non-commercial purposes (the link is attached in 

this article’s abstract). 
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Appendix A 

Adam (an abbreviation for Adaptive moment estimation) is an efficient momentum-based 

algorithm in terms of computational complexity (little memory resources required, low 

execution time, invariant to gradients and well-suited to problems with large 

datasets/parameters [23]). It was developed to combine the advantages of both well-known 

algorithm AdaGrad (able to deal with sparse gradients) and RMSprop (able to deal with non-

stationary objectives). Adam updates the exponential moving average of the gradients (mt) and 

squared gradients (vt) of loss function (ℒ) w.r.t its weights and biases (denoted as parameters 

W). The Adam algorithm is as follows: 

Step 1: Initialization: 

m0  0 (1st moment vector); v0   0 (2nd moment vector); t  0 (timestep)  

Step 2: Recursively perform the following series of computation until the convergence of the 

parameters W: 

Update timestep 

t  t + 1;  

Compute gradients of loss function w.r.t parameters W 

https://www.emworks.com/portal/download
https://christophm.github.io/interpretable-ml-book/feature-importance.html#fnref35
https://scikitlearn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html#sklearn.inspection.permutation_importance
https://scikitlearn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html#sklearn.inspection.permutation_importance
https://pypi.org/project/Flask-Language
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Gt  gradWℒ(t-1);  

Update the first and second biased moments 

mt  β1∙mt-1 + (1 − β1)∙Gt;  

vt  β2∙vt-1 + (1 − β2)∙Gt
2; 

Compute the adaptive learning rate 

αt   
𝛼 ∙ √1 − 𝛽2

𝑡

(1 − 𝛽1
𝑡)

⁄ ; 

Update the parameters W 

Wt  Wt-1 − 
(𝛼𝑡 ∙ 𝑚𝑡)

(√𝑣𝑡 + 𝜖̂)
⁄ . 

where (by default setting in this study) the learning rate α = 0.001; β1 = 0.9 and β2 = 0.999 are 

the exponential decay rates for the first and second moments, respectively; 𝜖̂ = 1e-07 is a 

constant to prevent the division by zero [35]. Operations on vectors are carried out 

elementwise. 

 


